Math 254B Lecture 16 Notes

Daniel Raban

May 6, 2019

1 Topological Entropy

1.1 Entropy of shift systems

Definition 1.1. Fix k, let $\Sigma_k = \{0, 1, \dots, k-1\}^{\mathbb{N}}$, and let σ be the shift operator. This called the **full shift**. A **subshift** is a closed subset $X \subseteq \Sigma_k$ such that $\sigma(X) = X$.

We will often write σ instead of $\sigma|_X$. If $x \in \Sigma_k \setminus X$ is open, there is $n \in \mathbb{N}$ and a word $w = w_0 \cdots w_{n-1} \in \{0, \ldots, k-1\}^n$ such that $(x_0, \ldots, x_{n-1} = w \text{ and } [w] = \{w : (x_0 \cdots x_{n-1}) = w\} \subseteq \Sigma_k \setminus X$. This is called a **forbidden word** of length n.

If w is forbidden of length n and $x \in \Sigma_k$ has $(x_i, x_{i+1}, \dots, x_{i+n-1}) = w$, then $x \in \Sigma_k \setminus X$.

Definition 1.2. X is a subshift of finite type (SFT) if there exist finitely many forbidden words $w^{(1)}, \ldots, w^{(n)}$ such that $X = \{x \in \Sigma_k : (x_i, \ldots, x_{i+n^{(\ell)}}) \neq w^{(\ell)} \forall n \forall \ell = 1, \ldots, m\}.$

Call words that are not forbidden **permitted**, and let $N_n(X)$ be the number of permitted words of length n. Observe that $\log(N_n(X))$ is a subadditive sequence:

$$N_{n+m}(X) \le N_n(X)N_m(X) \qquad \forall n, m \ge 1.$$

This is because $w \in \{0, \ldots, k-1\}^{n+m}$ is permitted, then so are $w_{[0,n-1)}$ and $w_{[n,n+m-1)}$. So we can look at

$$\lim_{n} \frac{1}{n} \log(N_n(X)),$$

the growth rate of the number of permitted words.

1.2 Packing numbers and covering numbers

What about on general topological dynamical systems? On Σ_k , let

$$\rho(x, y) = 2^{-\min\{n: x_n \neq y - n\}}.$$

This is a metric.¹ Observe that $\rho(x, y) \leq 2^{-n}$ iff $(x_0, \cdots, x_{n-1}) = (y_0, \cdots, y_{n-1})$.

¹It's actually an ultrametric, even.

Definition 1.3. In any (X, ρ) , given $\delta > 0$, define the δ -packing number as

$$\operatorname{pack}_{\delta}(X,\rho) := \max\{|F| : F \subseteq X, \rho(x,y) \ge \delta \,\forall x \neq y \in F\}.$$

In our setting, $N_n(X) = \operatorname{pack}_{2^{-n}}(X, \rho)$. Packing numbers are not so easy to work with, so let's introduce a few other notions.

Definition 1.4. In any (X, ρ) , given $\delta > 0$, define the δ -covering number as

$$\operatorname{cov}_{\delta}(X,\rho) = \min\{|F| : \bigcup_{x \in F} B_{\delta}(x) = X\}.$$

Also define²

$$\operatorname{cov}_{\delta}'(X,\rho) = \min\{|\mathcal{E}| : \mathcal{E} \subseteq \mathscr{P}(X), \bigcup \mathcal{E} = X, \operatorname{diam}(E) < 2\delta \ \forall E \in \mathcal{E}\}.$$

Lemma 1.1. Let $\delta > 0$. Then

$$\operatorname{cov}_{2\delta} \le \operatorname{cov}_{\delta}' \le \operatorname{cov}_{\delta},$$

 $\operatorname{pack}_{2\delta} \le \operatorname{cov}_{\delta} \le \operatorname{pack}_{\delta}.$

Proof. If \mathcal{E} as in the definition, pick $x_E \in E$ for all $E \in \mathcal{E}$. Then $\bigcup_{E \in \mathcal{E}} B_{2\delta}(x_i) = X$. A best possible δ -packing gives a candidate for a δ -covering.

1.3 Definition of topological entropy

Given a TDS (X,T), pick a compact metric ρ . The idea is to count the number of "effectively distinguished" orbits by time n.

Definition 1.5. The **Bowen metric**³ at time n is

$$\rho_n(x,y) = \max_{1 \le i \le n-1} \rho(T^i x, T^i y).$$

This is the worst possible distance of the orbits of x and y by time n. We are taking a max of more times as n grows, so $\rho \leq \rho_1 \leq \rho_2 \leq \rho_3 \leq \cdots$.

Define

$$N_{n,\delta}(X,T,\rho) := \operatorname{cov}_{\delta}'(X,\rho_n).$$

Lemma 1.2. The sequence $\log(N_{n,\delta})$ is subadditive:

 $N_{n+m,\delta} \le N_{n,\delta} N_{m,\delta}.$

²This second notion is not so standard, but it is convenient for our purposes.

³Since T is not necessarily injective, if we do not take the max, this is only a pseudometric.

Proof. Let \mathcal{E} be a minimal covering by sets of ρ_n -diameter $< 2\delta$. Let \mathcal{F} be a minimal covering by sets of ρ_m -diameter $< 2\delta$. Define $\mathcal{F}' = \{T^{-n}(U) : U \in \mathcal{F}\}$. Check that if $x, y \in T^{-n}(U) \in \mathcal{F}'$, then $T^n x, T^n y \in U$, so $\rho_m(T^n x, T^n y) < 2\delta$; i.e.

$$\max_{n \le i \le n+m-1} \rho(T^{n+i}x, T^{n+i}y) < 2\delta.$$

Define $\mathcal{G} = \{E \cap F : E \in \mathcal{E}, F \in \mathcal{F}'\}$. If $x, y \in E \cap F$, then $\rho(n+m)(x,y) < 2\delta$; this is uniform in x, y. Now $|\mathcal{G}| \le |\mathcal{E}| \cdot |\mathcal{F}'| = |\mathcal{E}| \cdot |\mathcal{F}|$. \Box

Definition 1.6. Define $h_{\text{top},\delta}(X,T,\rho) = \lim_{n \to \infty} \frac{1}{n} N_{n,\delta}$. The **topological entropy** of (X,T,ρ) is

$$h_{\mathrm{top}}(X,T,\rho) := \lim_{\delta \to 0} \frac{1}{n} \log(h_{\mathrm{top},\delta}(X,T,\rho)) = \sup_{\delta > 0} \frac{1}{n} \log(h_{\mathrm{top},\delta}(X,T,\rho)).$$

Lemma 1.3. It does not matter that we used cov':

$$h_{\text{top}} = \sup_{\delta > 0} \frac{1}{n} \log \operatorname{cov}_{\delta}(X, \rho_n) = \sup_{\delta > 0} \frac{1}{n} \log \operatorname{pack}_{\delta}(X, \rho_n).$$

1.4 Properties of topological entropy

Proposition 1.1. Let $\pi : (X, T, \rho_X) \to (Y, S, \rho_Y)$ be a semiconjugacy. Then

$$h_{top}(X, T, \rho_X) \ge h_{top}(Y, S, \rho_Y).$$

Proof. By compactness π is uniformly continuous. So for any $\varepsilon > 0$, there is a $\delta > 0$ such that $\rho_X(x,y) < \delta \implies \rho_Y(\pi x, \pi y) < \varepsilon$. Then

$$(\rho_X)_n(x,y) < \delta \implies (\rho_Y)_n(\pi x,\pi y) < \varepsilon.$$

So if $F \subseteq X$, then

$$\bigcup_{x \in F} B_{\delta}^{(\rho_{X,n})}(x) = X \implies \bigcup_{y \ in\pi(F)} B_{\varepsilon}^{(\rho_{Y,n})}(y) = Y.$$

Corollary 1.1. Topological entropy is independent of the metric: $h_{top}(X, T, \rho) = h_{top}(X, T)$.

Proof. With two competing metrics on X, $\pi = id_X$ is a semiconjugacy in both directions.

Lemma 1.4. Entropy dilates with time steps: $h_{top}(X, T^k) = kh_{top}(X, T)$. Proof. Observe that $(\rho_k^T)_n^{T^k} = \rho_{kn}^T$. Take logs, normalize, and send $n \to \infty$. \Box **Lemma 1.5.** $h_{top}(X \times Y, T \times S) = h_{top}(X, T) + h_{top}(Y, S)$ **Example 1.1.** Let (Σ_k, σ) have metric $\rho(x, y) = 2^{-\max\{n: x_n \neq y_n\}}$. Then

$$\rho_n = \begin{cases} 1 & (x_1, \dots, x_{n-1}) \neq (y_0, \dots, y_{n-1}) \\ 2^{-k} & \text{first difference is at time } n+k. \end{cases}$$

 So

$$\operatorname{pack}_{\delta}(X, \rho_n) = N_{n + \log_2(1/\delta)}(X).$$

So you can check that topological entropy agrees with our definition on subshifts.

What does this have to do with invariant measures? Next time, we will show that for any $\mu \in P^{\sigma}(X)$. $H(\mu_{[0,n)}) \leq \log(N_n(X))$, and

$$h_{\mu}(\sigma) \le h_{\text{top}}(\sigma|_X).$$