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1 Topological Entropy

1.1 Entropy of shift systems

Definition 1.1. Fix k, let Σk = {0, 1 . . . , k − 1}N, and let σ be the shift operator. This
called the full shift. A subshift is a closed subset X ⊆ Σk such that σ(X) = X.

We will often write σ instead of σ|X . If x ∈ Σk \ X is open, there is n ∈ N and
a word w = w0 · · ·wn−1 ∈ {0, . . . , k − 1}n such that (x0, . . . , xn−1 = w and [w] = {w :
(x0 · · ·xn−1) = w} ⊆ Σk \X. This is called a forbidden word of length n.

If w is forbidden of length n and x ∈ Σk has (xi, xi+1, . . . , xi+n−1) = w, then x ∈ Σk\X.

Definition 1.2. X is a subshift of finite type (SFT) if there exist fiintely many forbid-
den words w(1), . . . , w(n) such that X = {x ∈ Σk : (xi, . . . , xi+n(`)) 6= w(`)∀n∀` = 1, . . . ,m}.

Call words that are not forbidden permitted, and let Nn(X) be the number of per-
mitted words of length n. Observe that log(Nn(X)) is a subadditive sequence:

Nn+m(X) ≤ Nn(X)Nm(X) ∀n,m ≥ 1.

This is because w ∈ {0, . . . , k − 1}n+m is permitted, then so are w[0,n−1) and w[n,n+m−1).
So we can look at

lim
n

1

n
log(Nn(X)),

the growth rate of the number of permitted words.

1.2 Packing numbers and covering numbers

What about on general topological dynamical systems? On Σk, let

ρ(x, y) = 2−min{n:xn 6=y−n}.

This is a metric.1 Observe that ρ(x, y) ≤ 2−n iff (x0, · · · , xn−1) = (y0, · · · , yn−1).
1It’s actually an ultrametric, even.
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Definition 1.3. In any (X, ρ), given δ > 0, define the δ-packing number as

packδ(X, ρ) := max{|F | : F ⊆ X, ρ(x, y) ≥ δ ∀x 6= y ∈ F}.

In our setting, Nn(X) = pack2−n(X, ρ). Packing numbers are not so easy to work with,
so let’s introduce a few other notions.

Definition 1.4. In any (X, ρ), given δ > 0, define the δ-covering number as

covδ(X, ρ) = min{|F | :
⋃
x∈F

Bδ(x) = X}.

Also define2

cov′δ(X, ρ) = min{|E| : E ⊆P(X),
⋃
E = X,diam(E) < 2δ ∀E ∈ E}.

Lemma 1.1. Let δ > 0. Then

cov2δ ≤ cov′δ ≤ covδ,

pack2δ ≤ covδ ≤ packδ .

Proof. If E as in the definition, pick xE ∈ E for all E ∈ E . Then
⋃
E∈E B2δ(xi) = X.

A best possible δ-packing gives a candidate for a δ-covering.

1.3 Definition of topological entropy

Given a TDS (X,T ), pick a compact metric ρ. The idea is to count the number of “effec-
tively distinguished” orbits by time n.

Definition 1.5. The Bowen metric3 at time n is

ρn(x, y) = max
1≤i≤n−1

ρ(T ix, T iy).

This is the worst possible distance of the orbits of x and y by time n. We are taking a
max of more times as n grows, so ρ ≤ ρ1 ≤ ρ2 ≤ ρ3 ≤ · · · .

Define
Nn,δ(X,T, ρ) := cov′δ(X, ρn).

Lemma 1.2. The sequence log(Nn,δ) is subadditive:

Nn+m,δ ≤ Nn,δNm,δ.

2This second notion is not so standard, but it is convenient for our purposes.
3Since T is not necessarily injective, if we do not take the max, this is only a pseudometric.
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Proof. Let E be a minimal covering by sets of ρn-diameter < 2δ. Let F be a minimal
covering by sets of ρm-diameter < 2δ.Define F ′ = {T−n(U) : U ∈ F}. Check that if
x, y ∈ T−n(U) ∈ F ′, then Tnx, Tny ∈ U , so ρm(Tnx, Tny) < 2δ; i.e.

max
n≤i≤n+m−1

ρ(Tn+ix, Tn+iy) < 2δ.

Define G = {E ∩ F : E ∈ E , F ∈ F ′}. If x, y ∈ E ∩ F , then ρ(n + m)(x, y) < 2δ; this is
uniform in x, y. Now |G| ≤ |E| · |F ′| = |E| · |F|.

Definition 1.6. Define htop,δ(X,T, ρ) = limn
1
nNn,δ. The topological entropy of (X,T, ρ)

is

htop(X,T, ρ) := lim
δ→0

1

n
log(htop,δ(X,T, ρ)) = sup

δ>0

1

n
log(htop,δ(X,T, ρ)).

Lemma 1.3. It does not matter that we used cov′:

htop = sup
δ>0

1

n
log covδ(X, ρn) = sup

δ>0

1

n
log packδ(X, ρn).

1.4 Properties of topological entropy

Proposition 1.1. Let π : (X,T, ρX)→ (Y, S, ρY ) be a semiconjugacy. Then

htop(X,T, ρX) ≥ htop(Y, S, ρY ).

Proof. By compactness π is uniformly continuous. So for any ε > 0, there is a δ > 0 such
that ρX(x, y) < δ =⇒ ρY (πx, πy) < ε. Then

(ρX)n(x, y) < δ =⇒ (ρY )n(πx, πy) < ε.

So if F ⊆ X, then ⋃
x∈F

B
(ρX,n)
δ (x) = X =⇒

⋃
y inπ(F )

B
(ρY,n)
ε (y) = Y.

Corollary 1.1. Topological entropy is independent of the metric: htop(X,T, ρ) = htop(X,T ).

Proof. With two competing metrics on X, π = idX is a semiconjugacy in both directions.

Lemma 1.4. Entropy dilates with time steps: htop(X,T k) = khtop(X,T ).

Proof. Observe that (ρTk )T
k

n = ρTkn. Take logs, normalize, and send n→∞.

Lemma 1.5. htop(X × Y, T × S) = htop(X,T ) + htop(Y, S)
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Example 1.1. Let (Σk, σ) have metric ρ(x, y) = 2−max{n:xn 6=yn}. Then

ρn =

{
1 (x1, . . . , xn−1) 6= (y0, . . . , yn−1)

2−k first difference is at time n+ k.

So
packδ(X, ρn) = Nn+log2(1/δ)

(X).

So you can check that topological entropy agrees with our definition on subshifts.

What does this have to do with invariant measures? Next time, we will show that for
any µ ∈ P σ(X). H(µ[0,n)) ≤ log(Nn(X)), and

hµ(σ) ≤ htop(σ|X).

4


	Topological Entropy
	Entropy of shift systems
	Packing numbers and covering numbers
	Definition of topological entropy
	Properties of topological entropy


